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Generalized recurrence in dynamical systems

by

Joseph Auslander*

1. Introduction. In this paper, & notion of recurrence in dynamical systems

is introduced which is defined using continuous real valued functions on the
phase space, Our basic idea is as follows. Consider the class of continuous
real valued functions which are non-increasing along every orbit. Then we
single out those orbits along which all such functions are comnstant. This
set, which includes the periodic, recurrent, and non-wandering points, is
called the generalized recurrent set. TIts elementary properties are studied
in section 1, and it is shown (Theorem 2) that a single suitably chosen func-
tion reflects the "recursive" behavior of the dynamical system. By means of
prolongations, an intrinsic characterization of the generalized recurrent set
is given in section 3. This depends on a purely topological result involving
a closed quasi order (Theorem 4) which is apperently new amd may be of inde-
pendent interest. In section 4, the connection of the generalized recurrent
set with asymptotic and absolute stability of a compact invariant set is dis-
cussed. The condition that the dynamical system be free of generalized re-~
current orbits is shown to lie between parallelizability and complete insta-
bility (Theorem 6).
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In what follows, X denotes a locally compact separable metric space,

with metric d, and E denotes the real line. A dynamical system or

contimuous flow ?’J on X is a continuous map T : X X E »X satisfying

a) w(x, 0) =x (x € X)

b) w(m(x, tl), t,) = w(x, ¢, + t,), (xeX, t t, € E).

l’

From now on, we write xt in place of 7(x, t); axiom b) then reads

(xt))t, = x(t; +t,).

If x e X, the orbit of x is the set 1(x)

{xt|t € E}. The positive

{xt|t 2 0}, and

and negative semi-orbits of x are the sets ‘r+(x)
¥ (x) = {xt|t = 0} respectively.

We briefly recall some of the notions of recurrence which have occurred
in the study of dynamical systems, [3], [5]. They all express the idea of
a point returning to itself, in some sense, for arbitrarily large time. The
simplest is a periodic point, that is, a point x such that xT =x, for

some T > 0. A somewhat weaker notion is that of a recurrent or Poisson stable

point. The point x is called (positively) recurrent if, for every neighbor-
hood U of x, andevery T >0, there isa t >T such that xt € U.

Clearly x is recurrent if and only if there exists a sequence {tn} of

real numbers with tn — 4o and xtn —x. Still weaker is a non-wandering
point -- that is, a point x such that for every neighborhood U of x and
every T>0, UN Ut #@, forsome t >T. Obviously, the set of non-
wandering points contains the set of recurrent points, which in turn contains

the periodic points; well known examples show that these inclusions may be

proper.
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2. Generalized recurrence. Iet ?f denote the class of continuous real

valued functions f on X such that f(xt) = £(x), for all x € X and
all t >0. Iet z be a non-wandering point. If f €7/, then f is
constant on 71(z). To show this, let T > 0. Since z is non-wandering,
there are sequences z, % and tn — o guch that Zntn =22, For n
sufficiently large f(zntn) s f(zn'r), and by conmtinuity of £, £(z) = f(zt).
Since f €2C f(zt) = £(z), and therefore f(zt) = £(z). If t <0, apply
the same argument to 2zt and z = (z7)(-7).

We define the set Q to be the set of points x € X such that
£(xt) = £(x), for all fe?/, and all t = O. 62 will be called the

generalized recurrent set or sometimes the recurrent set. The above discus-

/')
sion shows that (;/t includes the non-wandering points, and therefore the

(ordinary) recurrent points and the periodic points.

Theorem 1. @ is a closed, positively and negatively invariant set.

Proof. q is obviously closed. ILet x € % and let 7 >0. Iet f eV,
If t >0, then f£(xt)t) = £(x(7 +t)) = £(x) = £(xr). Suppose xT ¢ q,
for some T < 0. Then there is a ge¢ ?/ and a to >0 such that
g((xr)t,) <g(xt). Let £ €?” be defined by £(z) = g(zr) (z € X). Then

f(xto) = g((xto)'t) = g((x'r)to) < g(xt) = £(x). This contradicts x € Q.

Since Q is invariant, it is meaningful to speak of recurrent orbits.
Ir t e'?f; then so are arc tan f and cf +d, where ¢ and 4 are

real numbers with c¢ 2 O. This remark and Theorem 1 yield

Iemma 1, Let & and b be real numbers with a <b. Iet

Vyp=1ellassx)sb, forell xeX}). Then x¢ Af and only if
3

£(xt) = £(x) forall fe?, , and all real t.
J
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According to the definition, a point x is in "\ only if all
T e ?F are constant on its orbit. The next theorem shows that there is a

"universal” £ for this purpose.

Theorem 2. There is an f in ?/ with the following properties:

(1) xe@ if and only if f is constant on 7(x).

(11) I£ x;/éf, and t >0, then f(xt) <f(x).

Proof. ILet C(X) denote the continuous real valued functions on X,
provided with the topology of uniform convergence on compact sets. Then C(X)
is a separable metric space amd so is % = -l 1° Iet {fk} (k = 1,2, ...)
be a countable dense set in 7/;. Then x € Q if and only if
fk(xt) = f, (x) for k=1,2, ..., andall teE. Now, let
= 3 & e Ty Since Ifk(x)l £ 1, it follows that f* is continuous
and 11:%/2 Ir £*(xt) = £*(x), for all t >0, then £, (xt) = £, (x) for
k=12, «o., and x € ‘Q. Ir x¢ g?, there is a sequence {tn} in
E with t -+» such that £%(x) >f*(xtl) >f*(xt2) > ... « Define

o0
£(x) = [ a(s)f*(xs)ds, when a is a positive strictly decreasing function
0 o

such that [ a(s)ds < 1. It is easily verified that f ¢ U and has the re-
0

quired properties.

P
3. Another characterization of éjf . We wish to characterize the set

intrinsically -~ that is, solely in terms of the dynamical system @J . We

do this by means of the theory of prolongations, developed by Ura, [6], [7],
and Seibert and the author, [2]. We now review those concepts and results from
this theory which we will need in this section. The reader is referred to the

papers clted above for details.
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et P_ beamp from X to X the set of all subsets of X. We

define two new maps, ya/Po and JPO, from X to 2X by

OE/PO(X) n P (U; (where 48 (x) denotes the neighborhood filter
of x), and JP (x) = U Pg(x). It is easy to see that y e ,DZ}/P (x)
n=1,2,...

if and only if there are sequences {x } and [y } in X with Y, € P (x )

such that x —x and y -y. Also y¢ JP (x) 4if and only if there are

points x_ = X, Xy seey X

L =Y, with x, e Po(xi_l) (i =212, <oy, n). The

i
ma.ps jand agmy be regarded as operators on the set of maps from X to

zx; ﬁ'is a "closure" operator and gf is a "transitizing" operator.
We define a family of maps Pa from X to 2X inductively. Iet

O&XPO. Now, let « be an ordinal number, and suppose P’3 has been

defined for B < Q. We define = U JP ). (BY UQ we mean the
B<a
map Q given by Q(x) = UQ (x)) If « is a successor ordinal, this de-

finition reduces to P ﬁJP ;+ Clearly, if B <aq, then PB(x) C Pa(x).
If q is sufficiently large (equal to the first uncountable ordimal ¢) it
may be shown that 08/ P, = J P, =P, and hence that P =P forall

A
AZ Q. We write P*¥ = U Pa’ which is equal to P

g.
This precedure is applied to two maps which are connected with the dyna-

+
mical system @J We let D (x) T (x), the positive semi-orbit of x,

As above, define M D, ¢5/D0 (since D, =D, already),
MD,... =o@/(u JD) and D¥ = UD_ . The maps D_ are
1 ’ 8 <a B’? a a
the prolongations of Ura. The other map under consideration, denoted by Jl’

is defined by y € Jl(x) if and only if there are sequences [xn}, and

[yn} in X, and {tn} in E, with tn—>-hao such that X, 9%, ¥y, Y
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and y, =xt . Then define J, = o(,C}JJl, ceey I = 00/( U XJB), and
* B<ca

Jd = U Ja.

It is clear that y is in Dl(x) if and only if there are sequences

(x )}, {y)} in X, and %t 20 with x -x, ¥

n = xntn, and Y, 2V

This tells us that Jl(x) C Dl(x); it follows by an easy induction that
J(x)CD (x) for all a2 1.
a a

We define J()a to be the set of x € X such that x ¢ Ja(x). Let

P
{Q‘ = U (/(a. Our altermate characterization of @ is given in the next

theorem,

Q

Theorem 3. (ja=6ly. Thet is, xeée if and only if x € J (x),

for some a.
The proof of Theorem 3 is preceded by a sequence of lemmas.

Lemma 2. Ja(x) is a positively and negatively invariant set.

Proof. Iet ye Jl(x) , and t € E, Then there are sequences {xn} in
X, {t )} in E, with x -x, t -> such that xt —y. Then t +1t 5w,
and xn(tn +1t) »yt, so yte Jl(x). Suppose the lemma is true for all

B<a. ILet ye Ja(x) and teE. Iet x -x, ¥, »¥, vhere
kn

Y, € Jﬁ (xn) (Bn <a k @ positive integer). By the induction hypothesis
n

t *n t J (x)
Yt Jﬁn(xn)’ and y t -yt e J(x).

Iemma 3, Ja(xt) = Ja(x)t = Ja(x), for all t e E.

Proof. By lemma 2, Ja(x)t = Ja(x). It is an immediate consequence of
the definition that Jl(x‘t) = Jl(x)t. Suppose JB(xt) = JB(x)t, for all
k

n 2
B<a, and let y e Ja(xt). Iet y e JBn(xn) (where B, <a, end k 2 1)
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such that x_ —-xt and y_ —-y. Now x (=t) -x, and
K B e n

yn(_t) € JBn(xn)(..t) = Jﬁn(xn) , Dby the induction assumption. Then
n n

yn(-t) -»y(-t), so y(-t)e Ja(x), and y € Ja(x)t. Hence

Ja(x‘b) C Ja(x)t. Now Ja(x)t = Ja(xt(-t))t C Ja(xt)(-t)(t) = Ja(xt).

*
It follows from Iemma 3 that ée is a positively and negatively in-

variant set.
Lemm k. D (x) = J (x) U r(x).

Proof. For a =1 the lemma is easy. Suppose it is true for all B <a.
+
Observe that if y' e Dlg(x'), then, by Lemma 3, y'e€ 71 (x'), or
y'e Jg(x'), where m = k. Now, if y € Da(x), let x -x, y -y, with
2

GDkn( Y (B < k 21). If e 3JPx) (1. sk ), for infinitely
In B *n By <@ X, * ¥n B V'n n - “n’’

n n
+
many n, yE€ Ja(x). If y &7 (xn), for infinitely many n, then

y € Dl(x) = r+(x) U Jl(x) C ‘r+(x) U Ja(x). The proof is completed.

Iemma 5. The following are equivalent:

(1) Xxe€ a)a

(1) ¥(x) C D)
(i11) xr e Da(x), for some T <0

(iv) Da(x) = Ja(x) .

Proof. (i) ==> (ii) is an immediate consequence of lemma 3, and
(11) => (iii) is clear. Suppose (1ii) holds. To show (iv), it is suffi-
cient, by Iemma 4, to show ‘r+(x)( Ja(x). Iet 7T <0 such that

XT € Da(x) = ‘r+(x) U Ja(x). If xT € r+(x), then x 1is periodic, and
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X € Ja(x). Otherwise xT € Ja(x). Iet t 2T, Then (xT)te Ja(x)t = Ja(x),

and ‘r+(x)C Ja(x). Since x € Da(x) always, (iv) ==> (i) is obvious.

lemma 6. If fef, andye D (x), them f(y) = £(x).

This is proved by a trivial induction.
Now we can prove that ’;?C Q). Iet x € (Za’ and let f e U,
Suppose t > 0. Then x € Ja(x) = Ja(xt), by Iemma 3. Since
Ja(xt) C Da(xt), Iemma 6 implies f(x) = f(xt). Since always
£(xt) s £(x), x¢ ﬁ
To prove that (//&C (}/Pe’ we define a relation £ on X by y«<£x
if and only if y € D*(x). Then =< 1s a closed quasi order on X. (By a
quasi order we mean a reflexive, transitive, but not necessarily anti symmetric
relation.) Observe that xt< x, whenever x€ X, and t+ >0. If x<y
but not y < x, we write x << y. We first show: if x ¢ (/2‘ , and
t >0, then xbtv<x. We know that xXt< x. If X< xt, then x e D (xt),
and xt € Q* by Iemma 5. Then x eéa*(—t) = 6\)* and this is a contradiction
s .
Theorem 3 now is a consequence of the following purely topological

theorem which has nothing to do with dynamical systems.

Theorem 4. let X be a separable locally compact metric space and

let << be a closed gquasi-order on X. Iet x and y in X such that

x <y does not hold. Then there is an f in C(X) such that (1) if

z<z% then f(z) £ £(2'), (11) £(y) <f(x).

This theorem will be proved in section 5.
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4, Recurrence and stability. In [2], the prolongations D, were employed

to study the stability properties of a compact positively invariant set M.

We say that M is stable of order a or a-stable if Da(M) =M. Tt is
easy to see that stability of order one is Just Liapunov stability. If M
is a-stable for every ordinal number @, then M 1is said to be absolutely

Absolute stability of M 1is equivalent to the existence of a continuous
Liapunov function for M (that is, a continuous non-negative function V
defined in a positively invariant neighborhood U of M such that V(x) =0
if and only if x € M, and such that V(xt) = V(x) for xe€ U, and t >0)
([2], Theorem 3).

Now, while evidently absolute stability is a rather strong condition,
simple examples show that it is weaker than asymptotic stability (that is )
Idiapunov stability as well as the existence of a neighborhood U of M such
that xt »M, as t -, for all x € U). We shall show that the difference
between absolute stability and asymptotic stability is the existence of
generalized recurrent orbits arbitrarily close to M.

Iet M be an absolutely stable compact positively invariant set, and
let V be a continuous Liapunov function for M, defined in a neighborhood
U of M. Then there exists € >0 such that U* = {x IV(x) =€} is a com-
pact subset of the interior of U.

We may suppose € = 1, Iet f denote a "universal" function in (Z/A s

as constructed in Theorem 2, such that f(x) >0, for all x € X. Define

V(x)£(x) xe U

V1(x)=
G £(x) xeX-U
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Then V' is a comtinuous Iiapunov function for M, which is defined on
- 2
all of X, so V'e CZ’/ . Moreover, it is clear that if x € G]{,

Vi(xt) = V'(x), and if x e X -@- M, V'(xt) <V'(x), for all t >O0.

Iemma 7. Iet M be absolutely stable, and let U be a compact posi-

*
tively invariant neighborhood of M. let M = (M U 6&)) N U. Then, for all

*
xe€U xt-M as t -,

Proof. First observe that M* is positively invariant., Iet V' ©be
the Liapunov function constructed above, and let x € U - M. Iet vy € (x),
the omega 1limit set of x. Then there is a sequence [tn} in E with
t -« such that xt —y. RNow tlimwv'(xt) = A exists, and obviously
V'(y) = A. Moreover, if T € E, t, +T »®, s0 V'(x(tn + 7)) >V (yT) = A
Therefore y € UnN @C M.

The method of proof of this lemmn is due to IaSalle, ({4], Theorem 1.)

Theorem 5. Iet M be absolutely stable, Then M 1is asymptotically

stable if and only if there is a neighborhood U of M such that

(U - M) n@= 0.

Proof. If M is asymptotically stable, there exists a neighborhood W

of M and a continuous Liapunov function V for M such that V(xt) < V(x),

forall xe W-M and 811 t >0 ({2], Theorem 5). If we construct V'

and U* as above, it is clear that there are no recurrent orbits in U* - M.
Conversely, let U be a neighborhood of M such that (U - M) ngf = .

Then M = (M UQ) NU=M, and, since M is Iiapunov stable Iemma 7

implies that M 1is asymptotically stable.
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The absence of generalized recurrent orbits in X may be regarded as
an instability property of ?}/ . As Theorem 2 shows, a‘= ¢ is equiva-
lent to the existence of a continuous real valued function which is strictly
decreasing along every orbit. As we shall see, this property actually lies
between two known instability criteria.

The dynamical system ? is said to be parallelizable if there exists

a set SC X which intersects every orbit of 75 , and s homeomorphism
h of X onto S XE such that h(xt) = (x,t), whenever x € S. The set

S is called a global section for ?}J. In [1] , Dugundji and Antosiewicz

prove that a:/\'J is parallelizable if and only if it is dispersive ~- that is,

if x, y € X there are neighborhoods Ul and U2 of x and y respectively,
and & constant T >0 such that Uit N U, = @, for [|t| >T. Now, this is
the same thing as saying that Jl(x) =¢, forall x e X, and it follows by

& trivial induction that J (x) = @, for all x e X. Then & fortiori

(;()=q>.

# is said to be completely unstable if all points are wandering.

P
That is x ¢ J. (x), for all x € X, and g() ®. Therefore, if (‘1= o,

then g is certainly completely unstable.

Theorem 6. (1) If OF is parallelizable, (= .

(11) If 6&7 = ¢, ZF is completely unstable.
(111) If 9*/13 completely unstable, and if D (x) +(x), for all x € X,

then gj is parallelizable.
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Proof. (i) and (ii) have already been proved. To prove (iii), we
show that ? is dispersive. let x € X and suppose ¥y € Jl(x). Then
+
ve v (x), so y=xt, for some T >0. Therefore xT € Jl(x), and

x e J(x)(-r) = Jy(x), which contradicts complete instability.

The converses of (i) and (ii) do not hold in general. Consider the

dynamical system ? defined by the system

dx _

_dt =siny
gl: 2
3t cos Y.

The orbits of ?/are the curves x = c + sec y, and the lines
y = (2k+1)"2-5 (k=0, +1, ... ).

Let '?-}Jo be the dynamical system obtained by restricting ?J to the
strip ~Z sy sZ Inthis case, @ = ®, since the function
f(x, y) = - y(arctan x + ) is strictly decreasing along every orbit. It
is easy to see that o}/’o is not parallelizable; indeed, it has an improper
saddle point ([5], p. 411).

To see that the converse of (1i) is false, consider the dynamical system
?1 obtained from ?:‘by identifying (x, y) anmd (x, y + 2m). ?—)1 has the
same local properties as ?j\:), and is therefore completely unstable. For

ey real x, (x, Denx, D am (x, e ax D so

(x, '—'l-er = (x, %T) € J‘]?_(x, :-725) C I, (x, %) and therefore @2 # 2.

An interesting problem is to consider the consequences of the assumption
+
Dl(x) = v (x), forall x e X. If, in addition to this hypothesis, it is
assumedthat there are no singular or periodic orbits, I conjecture that u}/

is completely unstable (and therefore parallelizable).
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5. Ihe proof of Theorem 4., Iet X = u KJ-’ where each KJ is
=L,2, ...
compact, and K,j+1 is a neighborhood of KJ (J =1,2, ... ).

Iet A denote the dyadic rationmal numbers A with 0 = A.<1l. We shall
define, for each A € A, a set U)\ such that 1) y is in every U)\ and x
is inno U, 2) If A, A'e A, with A <A' then U)\C interior U, 3)

If ze T and z'4 z, then z‘eUy and 4) U NK

N 3 1s compact

(ANe A, §=1,2, ... ).

Once the sets U)\ with these properties are defined, we may define
£(z) = inf{A € Alz € Uk]’ and f(z) =1 if z is in no U. It is easy to

verify that £ 1is continuous and has the necessary properties.

If ze€X let L(z) = {z' € X|z'{ 2z} and if AC X, 1let
L(A) = U L(z). Since =K is transitive, L(L(A)) = L(A).
zZ € A
By renumbering if necessary, we may suppose that x and y are in the

interior of K.l Iet Wo and N be disjoint compact neighborhoods of ¥y
and x respectively such that L(Wo) 1 N = ¢. Such neighborhoods exist,

since < is closed. Let Uo, = L(WO) N K,. Then Uo,l is compact,

1

L(Uo,l) nNK = Uo,l, and Uo’l NN=g. Now, let w%’l

borhood of U, , in K such that L(W%’l) NN=g Iet U = L(W%,l) nK.

U —3 t—
Then I( %,1) n K U%’l, and U%,lnN @g. Also Uo’lC interior U%,l.

be a compact neigh-

Continuing in this manner, we construct U3 /i, 17 U7 /8,1’ ees « To define,

for example, Ul/ll-,l proceed as follows. Iet N*¥ = closure (Kl - q—é—,l)°

Then U , NN = #, and we may let N*¥ play the role of N above. That
b4

is, we find a compact neighborhood Wl /"bl of Uo,l such that

% 3 -
L(W, /J+,l) N N* = . This is possible since L(Uo,l) NK =1, . Then, let

l.
Ul/lt,l = L(wl/lt,l) N X,. Clearly, Ul/h,lc interior U—%,l'
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By this process, we obtain compact sets U, . (e A) in r, suwh
}

that y € interlor U, i, X ¢ ,, and, if X <\', then umc interior U,
L4 >

("interior" is relative to Kl).

Next we define UM2 analogously using K2 in place of Kl’ We start
with the same W, and N, and define UQ’2 =L(W) NK, = L(Uo,l) n K.
Now, let Wp 5 be a campact neighborhood of U in K2 such that

2> 0,2

W; n = LW NN= and L(W: = . That this is
3,2 NE =W, 1) NE=, (00 0 =0y ;
possible again follows from the "closed" property of ~£ ., Proceed as above 3
always requiring Wx,z nNkK = Wx,l’ L(Wx,a) nk = u)\,l, and
L(W)\,a) N N =g@. Define U)‘,z = L(Wx,a) N K,. Obviously uk’lc u)”2 for
each A € A.

For each positive integer k, define U)‘ k in this manner, and let

s

U)\ = U UA. x* [Properties 1) and 2) follow from the corresponding pro-

k=l’2’oo- 4
perties of the Ux,k’ and k) is true since g Nk, = I&,J. et ze 0,
and suppose 2z'<«{z, Then 2z € Uh iy z' € Kl for some J amd 1[.

>

t— 1 t = P
If m=mx(J, 2), z¢€ u}\,m, z'e¢ K and z'e L(Uk,m) nK, Uk,mC LY
Hence 3) is true.

RIAS and University of Maryland.
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